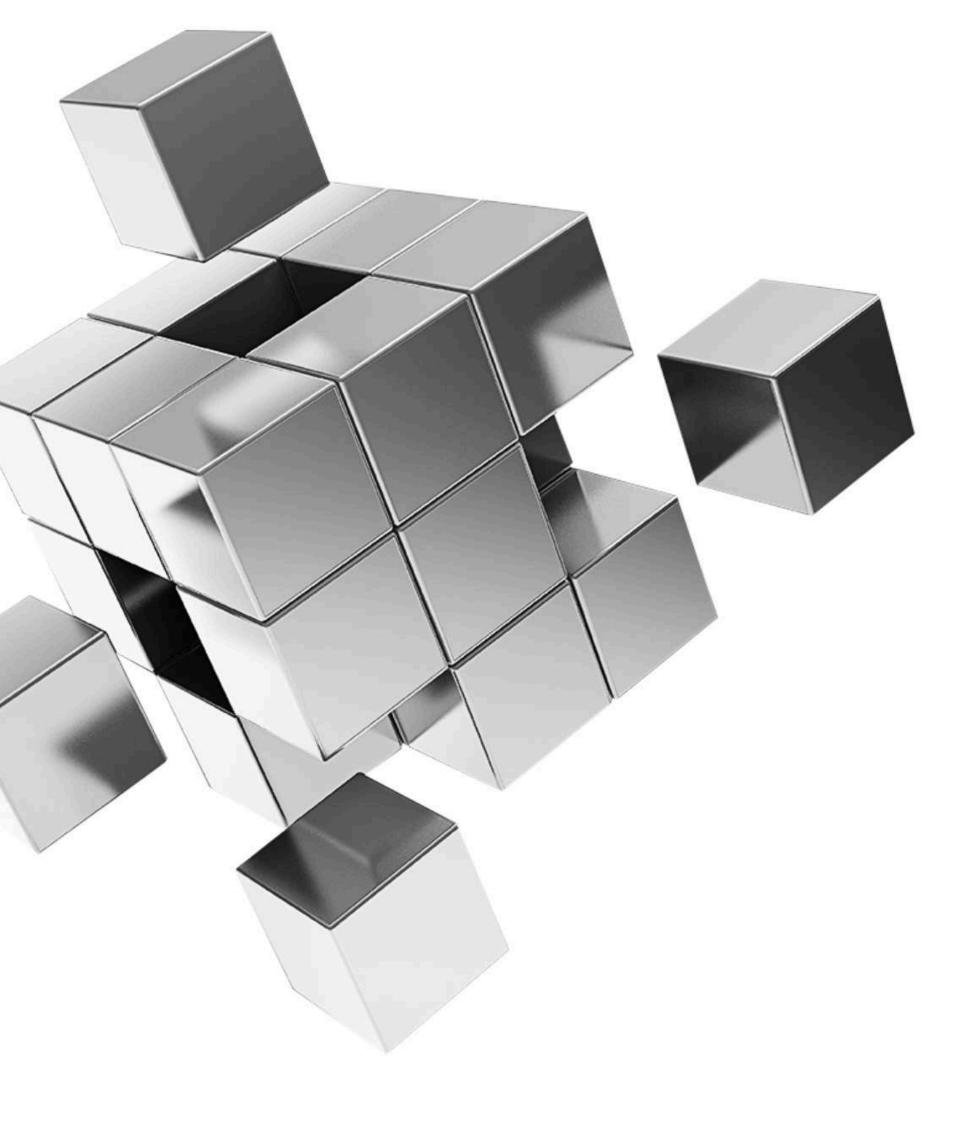


Общество с ограниченной ответственностью «РЕСЕРЧ ДАТА ЛАБ»


оптимизацию участка дробления

Machine learning

Промышленность

Консалтинг

Data Science

red_mad_robot rdl_袾

Хотите узнать, как искусственный интеллект помогает горнодобывающим предприятиям?

Это «Стойленский ГОК»

Стойленский горно-обогатительный комбинат входит в тройку ведущих российских предприятий по производству железорудного сырья

- Занимается разработкой одного из самых крупных месторождений Курской магнитной аномалии (КМА). Основная продукция железорудный концентрат, железная агломерационная руда и железорудные окатыши.
- Богатую руду и железистые кварциты добывают открытым способом в карьере.
- Руду с высоким содержанием железа (50-56%) сразу же отгружают потребителям, а кварциты измельчают и направляют на обогатительную фабрику, где путем магнитной сепарации извлекают железорудный концентрат.

И у него есть такая задача...

- Добытую методом подрыва горную породу доставляют на фабрику для того, чтобы здоровенные камни раздробить на части, а части перетереть в щебень, а щебень потом в песок.
- На каждом этапе, если дробить слишком мелко, то это приведет к перерасходу энергии и износу машин, а если слишком крупно этот перерасход и износ лягут потерями на следующем технологический этапе.
- Надо дробить в заданном коридоре и всем будет счастье, но мы не знаем, слишком мелко мы дробим или слишком крупно.
- Конвейер огромный, едет со скоростью 3,15 м/с, глазами люди там ничего отличить не могут. А нужно знать точный фракционный состав руды.

Давайте поподробнее...

- Не хватает оперативной информации в режиме реального времени о качестве дробления на промежуточных этапах комплекса.
- Управляющие воздействия на оборудование осуществляется после визуального контроля за состоянием получаемой руды и субъективной оценки экспертом. Параметры записываются вручную в журнал.
- Анализ фракций руды производится сотрудниками лаборатории с определенной периодичностью. Для этого требуется остановка конвейера, а результаты поступают с существенной задержкой.
- Отсутствует контроль за негабаритными кусками породы вследствие прорыва сита. Если по конвейеру едет брак большой камень или много больших камней — мы не останавливаем ничего, а просто миримся с тем, что дальше дробить будет дороже.
- Операционное управление осуществляется для поддержания текущих показателей, без заявки на возможный прирост производительности.

red_mad_robot rdl_*

Начинаем партнерский npoekt c HJIMK

AI технологии для бизнеса © rdl by red_mad_robot, 2022

Фиксируемся на результатах

Цель проекта

- Повысить эффективность процесса измельчения руды путем улучшения качества дробления
- Внедрить сбор информации о качестве дробления руды
- Автоматизировать принятие решений по настройке режимов работы последующего оборудования
- Выявить появление негабаритов в рудном потоке

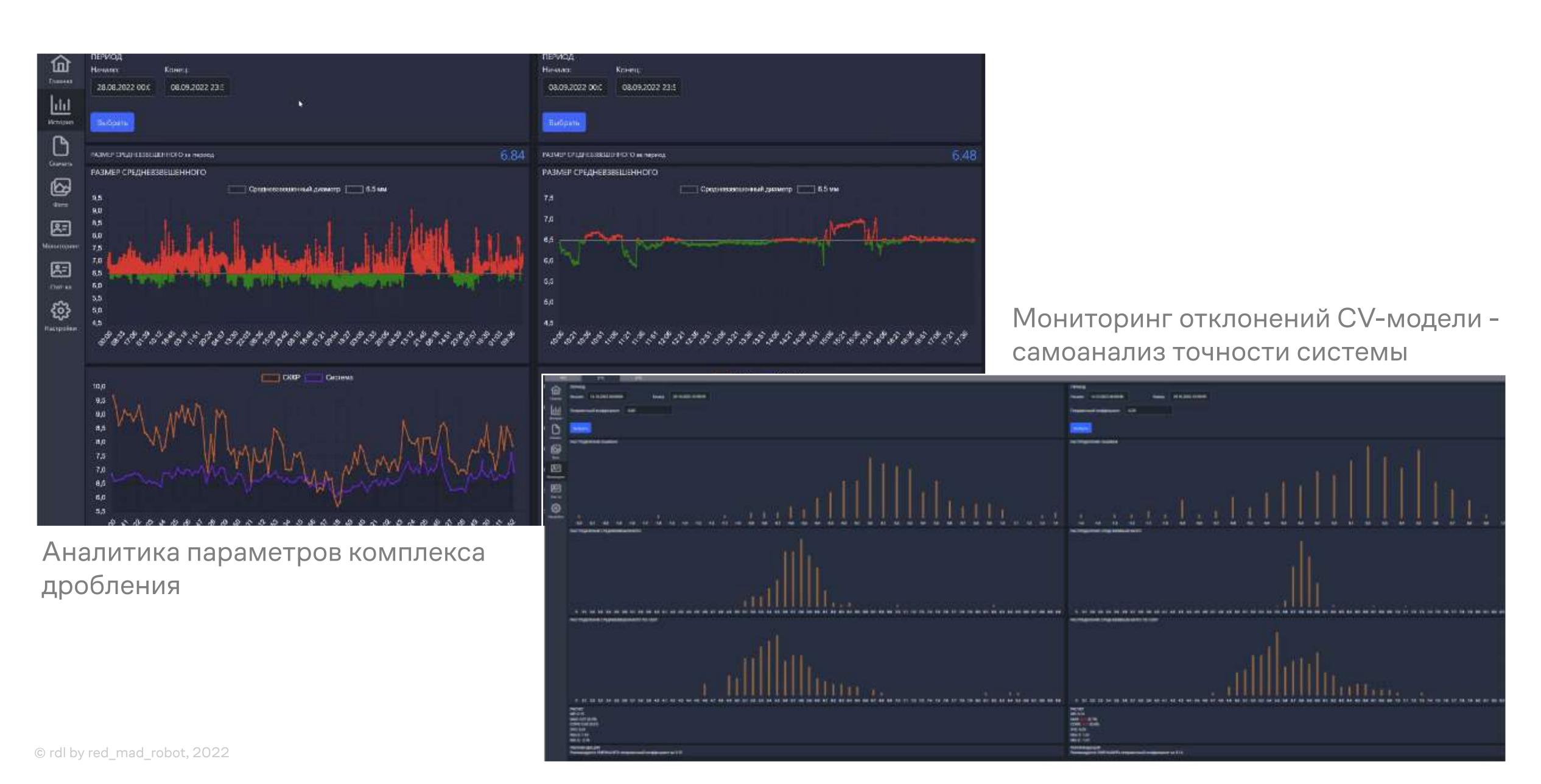
Бизнес-задачи

- Увеличить объем переработки руды на 3200 т/мес
- Сократить время работы на пониженной производительности на 15% в год и исключить внеплановые остановки конвейерных лент
- Сократить время получения данных о фракционном составе руды с 2 часов до секунды
- Исключить инциденты связанные с попаданием негабаритов в промышленные агрегаты
- Оптимизировать качество выходной продукции в требуемом диапазоне за счет оптимальной настройки дробильного оборудования

Реализуем решение

Автоматическая система анализа грансостава реализована в виде программно-аппаратного комплекса

- Система принимает на вход поток изображений с видеокамеры, установленной над конвейером
- Умная видеоаналитика непрерывно анализирует видимый слой руды
- За счет применения технологий компьютерного зрения и искусственного интеллекта система в автоматическом режиме выдает информацию о фракционном составе дробленой руды на конвейере и выявляет негабаритные куски породы
- Данные поступают на пульт оператора АСУТП в режиме реального времени
- Полученные данные позволяют сформировать рекомендации для максимально точной оптимизации и работы оборудования комбината



Вот что наша система умеет

- 1. Realtime мониторинг грансостава руды на конвейере смотрим видеопоток онлайн, что происходит на конвейере, получаем графики изменения параметров за сутки
- 2. Внедрили алгоритм детекции границ крупных камней чтобы косвенно диагностировать работу дробилки
- 3. Сделали хранилку получаемых данных и результатов помним, что было с системой год назад
- 4. Есть фотоархив изображений мы держим два месяца полной истории на всякий случай
- 5. Формируем отчеты в удобном виде раскрываем информацию для менеджмента
- 6. Внедрили оценку состояния камеры и света чтобы прогнозировать, когда надо будет протирать оборудование от пыли

А еще вот так...

Применяемое оборудование

Высокоскоростная камера

(до 30 кадров в сек.)

Свет

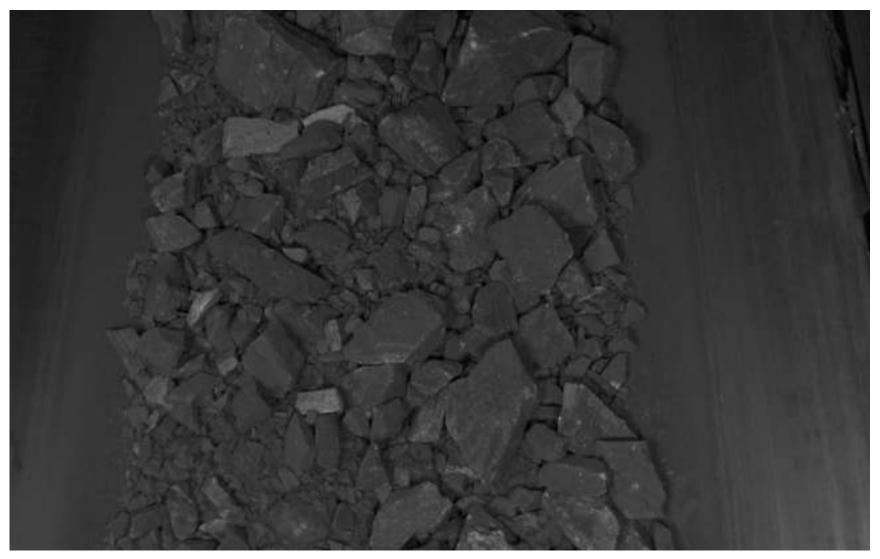
(4-6 прожекторов с постоянным током (для ликвидации эффекта мерцания))

Сервер Аналитики

(HPE DL380 GEN10 2U)

Система хранения данных

Synology DS420+



Инновационность решения

Реальное изображение

Синтетически сгенерированное изображение

• Применение технологий компьютерного зрения и искусственного интеллекта для решения задачи автоматизации мониторинга гранулометрического состава руды в режиме реального времени при высокой скорости движения анализируемого объекта — уникальное решение

> Подобные решения на базе лазерных технологий - лидары, камеры глубины - хорошо определяют форму, объем, но не могут детектировать грансостав

- Высокая точность до 95% предсказания классов крупности руды во всем ее объеме (во внешнем и внутреннем слое) за счет использования технологий нейронных сетей и математических алгоритмов
- Использование 3D синтетически сгенерированного датасета для обучения нейронных моделей

AI технологии для бизнеса 12

red_mad_robot rdl_*

Много экспериментировали с оборудованием

Подбирали камеры объективы, настраивали положение В цеху темно - не сразу, но мы нашли правильные светильники и смогли увидеть контуры камней вместо тёмно-серого потока

Данных для обучения нейросетей было очень мало

Мы искусственно нагенерировали огромный массив 3D синтетического датасета

Боролись с запылением оборудования

Помещения цеха, где дробится руда, не хирургическая операционная — камеры и прожекторы периодически пылятся думали про кожухи с дворниками и водой. Попробовали. Пока не работает

Как увидеть то, чего не видит камера?

Внутренний слой руды никак не посмотреть, но знать, что там находится нужно, поэтому, используя данные ручных рассевов, мы стали их предсказывать

red_mad_robot rdl_袾

Результаты в цифрах

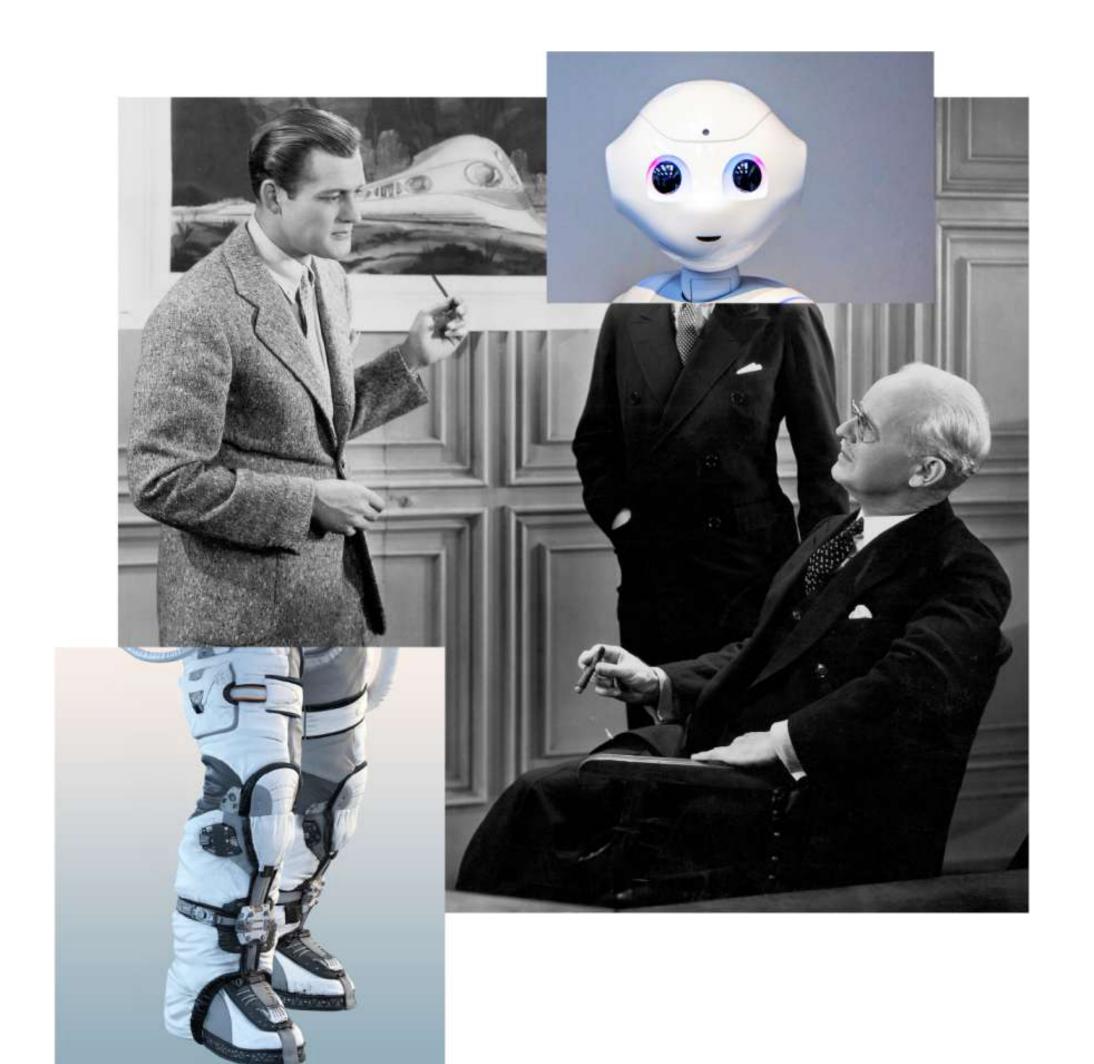
AI технологии для бизнеса © rdl by red_mad_robot, 2022

Бизнес результаты

млн. руб. в год

— экономический эффект

Увеличили объем переработки руды на 3200 т/мес


Сократили время на получение информации о гранулометрическом составе руды с 2 часов до секунд — теперь данные поступают realtime.

Сократили объем ручного труда: ручной рассев заменен видеоаналитикой на основе данных собираемых с помощью разработанного решения и дает к ним доступ 24/7 в течении 12 мес, а время, затрачиваемое ранее на подготовку и передачу информации, мы вообще устранили

Как планируем развиваться?

- Не хватает оптимизации. Сейчас мы делаем 20-30 прогнозов в секунду, а надо быстрее, до 50 раз — иначе пропускаем часть быстро уезжающих камней. Надо оптимизировать код в паре мест, это просто время.
- Бывает руда цвета ленты конвейера: у нас такой в карьере нет, но в природе встречается. Что с этим делать, пока непонятно. Но мы уже, пососедству, решаем похожую задачу для оценки качества извести, а там всё в белой пыли, то есть фон совпадает с цветом объекта.

Офис Redmadrobot в Москве: Ленинский пр-кт, д. 15А +7 (495) 933-05-95 hello@redmadrobot.com